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Abstract
Barrier trees consisting of local minima and their connecting saddle points
imply a natural coarse-graining for the description of the energy landscape
of RNA secondary structures. Here we show that, based on this approach, it
is possible to predict the folding behaviour of RNA molecules by numerical
integration. Comparison with stochastic folding simulations shows reasonable
agreement of the resulting folding dynamics and a drastic increase in
computational efficiency that makes it possible to investigate the folding
dynamics of RNA of at least tRNA size. Our approach is readily applicable
to bistable RNA molecules and promises to facilitate studies on the dynamic
behaviour of RNA switches.

PACS numbers: 87.14.Gg, 87.15.He, 87.15.Aa, 87.15.Cc

1. Introduction

A comprehensive understanding of the folding process of biopolymers such as proteins and
nucleic acids is one of the core issues in structural biology. It seems fair to say that Molecular
mechanics, despite all the progress in recent years [6, 33], will for the foreseeable future
remain incapable of predicting, say, the folding pathway of a globular protein starting from
a random coil state all the way to its (unknown) native state. Obviously, such a simulation
would solve the protein folding problem.

In contrast to protein folding, the secondary structures of nucleic acids provide a level of
description that is sufficient to understand the thermodynamics and kinetics of RNA folding
[8]. We show here that folding pathways of RNA molecules of at least the size of tRNAs
can be computed for arbitrarily long timescales within the secondary structure framework.
To this end we exploit the fact that RNA secondary structures can be computed exactly with
efficient polynomial algorithms, a fact that allows a detailed computational analysis of the
conformational energy landscape.
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A landscape perspective was also used with some success in theoretical work on protein
folding [11, 27, 29], but a direct computational analysis of the landscapes of real molecules is
possible only for very short peptides, see, e.g., the review of Klepeis [18]. A master-equation
approach similar to ours has been reported in [28] for lattice proteins, but in spite of the drastic
simplification of the lattice model it is still computationally harder than the RNA case.

A thorough analysis of RNA folding dynamics is a necessary prerequisite for
understanding the functionality of a variety of small RNA molecules. It has been shown
repeatedly that alternative conformations of the same RNA sequence can perform completely
different functions, e.g. [2, 30, 37]. SV11, for instance, is a relatively small molecule that is
replicated by Qβ replicase. It exists in two major conformations, a metastable multi-component
structure and a rod-like conformation, constituting the native state, separated by a huge energy
barrier. While the metastable conformation is a template for Qβ replicase, the ground state
is not. By melting and rapid quenching, the molecule can be re-converted from the inactive
stable to the active metastable form [45].

In recent years dynamical aspects of RNA structure formation, including transitions at
the level of RNA secondary structure, have received increasing attention, because they can
play a crucial role in the understanding of the biological function of RNA. It has been shown
for a number of natural RNAs that the formation of alternative or metastable conformations
are well-defined steps in their folding pathways. These folding intermediates determine the
biological function of the molecule.

The translation of the four genes encoded on the genomic RNA of the bacteriophage MS2
is regulated by the secondary structure transition of the 5′ untranslated leader sequence from a
metastable hairpin to a stable cloverleaf structure [34]. While the expression of the lysis and
replicase genes is coupled to the expression of the coat protein in the full-length RNA, the
maturation gene, coding for the A-protein needed by the virion for the attachment to E. coli,
is inaccessible to the ribosome due to the cloverleaf structure of the leader sequence. During
transcription of the viral RNA the 5′-end of the leader sequence is trapped in a metastable
hairpin allowing the ribosome to access the A-protein gene. After some time the hairpin is
disrupted in favour of the stable cloverleaf, thereby silencing the A-protein gene expression.
This secondary structure switch precisely controls the amount of A-protein translated from
the MS2 genomic RNA.

The Hok/Sok system of plasmid R1 from E. coli is another prominent example of the
regulation of gene expression via an intricate cascade of secondary structural rearrangements.
The Hok/Sok system mediates plasmid maintenance by expressing the Hok toxin which kills
plasmid-free segregates. The plasmid encodes for a highly stable mRNA, which is translated to
the Hok toxin if the mRNA is in its activated conformation, and a labile anti-sense RNA (Sok)
which acts as an antidote by binding to the activated hok mRNA, leading to a rapid degradation
of the resulting duplex. The full-length hok mRNA forms a pool of inactive mRNAs. In time,
however, the hok mRNA gets processed resulting in the truncation of the 3′-end, which triggers
a refolding of the mRNA into the active conformation. Then both locations, the Hok gene
and the Sok binding site are accessible. If the plasmid was lost, the pool of the antidote Sok
is depleted, since the hok mRNA is considerably more stable than the sok RNA inducing
the killing of the cell. For recent reviews on biologically functional RNA switches refer
to [4, 24].

2. The energy landscape of RNA molecules

RNA secondary structures can be decomposed uniquely into a set of ‘loops’ of different
types: stacked base pairs, bulges, interior loops and multi-branched loops. The standard
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energy model [21] describes the energy of an RNA secondary structure as a sum of sequence-
dependent contributions for each loop. Dynamic programming algorithms are known to exactly
and efficiently compute the minimum free energy structure [48], the base pairing probability
matrix [22], the density of states [7], certain sub-optimal structures [47] or all structures with
an energy below a threshold value [44]. A suite of these algorithms is implemented in the
Vienna RNA Package which forms the basis for the computations reported here [14, 15].

Within the framework of RNA secondary structures, we can understand the process of
folding as a time-series of secondary structures such that the elementary transitions are the
opening or closing of a single base pair. This idea is implemented in the program kinfold
[9], which allows simulations of RNA folding trajectories for macroscopic timescales. The
simulated annealing approach to secondary structure formation used in [36] is based on the
same idea. Other methods for simulating folding dynamics typically use formation and deletion
of helices as the move set [13, 20, 23], but this requires ad hoc assumptions about the rates.
The paRNAss [40] program tries to predict RNA switches by clustering suboptimal structures
by structural similarity and a crude measure of the energy barrier between the clusters. Here
we undertake a much more detailed investigation of the energy landscape.

Given an RNA sequence s, let X denote the set of possible secondary structures that can be
formed from s satisfying the pairing logic of RNA, i.e., considering only Watson–Crick (GC,
AU) and wobble (GU) pairs. The move set M (e.g. opening and closing of base pairs) and
the energy function E define a landscape on X that can be seen as a coarse-grained (discrete)
version of the potential energy surfaces used, e.g., in the MD simulations.

Within the framework of the folding landscape, we can meaningfully speak of local
minima or metastable states, their basins of attraction and the saddle points separating them.
Formally, a secondary structure x ∈ X is a local minimum of E if E(x) � E(y) for all its
neighbours, (x, y) ∈ M. A gradient walk is defined as follows: starting from x ∈ X we move
to its neighbour y with minimal energy if E(y) < E(x). If the minimum energy neighbour
y of x is not uniquely defined, we use a deterministic rule to break the tie, for instance, by
choosing the structure that comes lexicographically first. The step from x to y = γ (x) is
repeated until we reach a local minimum where the walk terminates, γ (x) = x. The local
minima are therefore the attractors of the map γ : X → X and each x ∈ X is mapped onto
a unique local minimum z = γ ∞(x) = γ t (x) by a finite number t of applications of γ . The
basin of attraction of a local minimum z,B(z), consists of all secondary structures that are
mapped onto it by the gradient walk, i.e. B(z) = {x ∈ X|γ ∞(x) = z}. Below we will need
the (trivial) fact that these ‘gradient basins’ of the local minima form a partition of X.

Let us now turn to the transitions between local minima. The energy of the lowest saddle
point separating two local minima x and y is

E[x, y] = min
p∈Pxy

max
z∈p

E(z) (1)

where Pxy is the set of all paths p connecting x and y by a series of subsequent moves. The
saddle-point energy E[. , .] is an ultra-metric distance measure on the set of local minima, see
e.g. [35].

In the simplest case the energy function is non-degenerate, i.e. f (x) = f (y) implies
x = y. Then there is a unique saddle point s = s(x, y) connecting x and y characterized
by E(s) = E[x, y]. This definition of a saddle point is more restrictive than in differential
geometry where saddles are not required to separate local optima [39]. For each saddle point
s there exists a unique collection of configurations V(s) that can be reached from s by a path
along which the energy never exceeds E(s). In other words, the configurations in V(s) are
mutually connected by paths that never go higher than E(s). This property warrants to call
V(s) the valley below the saddle s. Furthermore, suppose that E(s) < E(s ′). Then there
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Figure 1. Folding dynamics of xbix (CUGCGGCUUUGGCUCUAGCC). The process was started in
the open chain state and run until convergence to the thermodynamic equilibrium distribution.
(a) Barrier tree with local minima numbered by their energy, (b) Arrhenius approximation,
(c) macrostate process, (d ) full process. The label ‘mfe’ marks the minimum free energy structure
(local min. 1).

are two possibilities: if s ∈ V(s ′) then V(s) ⊆ V(s ′), i.e. the valley of s is a ‘sub-valley’ of
V(s ′), or s /∈ V(s ′) in which case V(s) ∩ V(s ′) = ∅, i.e. the valleys are disjoint. This property
arranges the local minima and the saddle points in a unique hierarchical structure which is
conveniently represented as a tree, termed barrier tree (see figure 1(a)). Since saddle points
separate local optima, each valley V(s) contains (in the non-degenerate case at least two) local
minima z1, . . . , zk . Conversely, V(s) ⊆ ⋃

k B(zk), i.e. the valley of s is contained in the union
of the basins of attraction of the metastable states ‘below’ s. The metastable states therefore
form the tips (or leafs) of the barrier tree. In the case of degenerate landscapes an analogous
construction is possible when certain saddle points with the same energy are collected into
equivalence classes. For mathematical details we refer to [10].

The exact calculation of the barrier tree for discrete systems is a highly challenging
computational problem and only recently some progress in that direction has been achieved.
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Even for very small system sizes, a simple-minded exhaustive search approach to evaluating
equation (1) would be hopeless as one must calculate all paths connecting all pairs of minima.
In fact, the exact evaluation of these paths was qualified as ‘desperately hard’ in an earlier bold
study of the energy barriers of the SK model [25], see also [19]. Instead, the program package,
barriers,3 constructs the barrier tree directly from an energy sorted list of all configurations
[9]. Starting with the lowest energy configurations, barriers explicitly builds the valleys
V(s) and subtrees by checking for each configuration whether it (a) is a local minimum,
(b) uniquely belongs to the basin of a local minimum that was encountered earlier in the
list or (c) ‘merges’ two or more basins, i.e. whether it is a saddle point. In contrast,
methods for exploring the continuous energy surfaces of molecules and molecular clusters,
for which exact enumeration is impossible, use incomplete databases of minima, transition
states and their connecting rearrangements. When searching for transition states starting from
a given minimum, these numerical techniques make explicit use of the fact that the potential
energy surface is a differentiable manifold and hence are not applicable to the discrete setting
considered here, see e.g. [1, 3, 41, 42].

In practice, we usually cannot generate the complete landscape of the RNA molecule.
The program RNAsubopt [44], however, computes all structures below a certain threshold
value in O(n3 + nQ) time, where n is the sequence length and Q is the number of secondary
structures of interest. This is a controlled approximation in the sense that we can compare the
partition function of all explicitly generated structures xi, Z

′ = ∑Q
i=1 exp(−E(xi)/RT ), with

the exact partition function Z computed by McCaskill’s algorithm: (Z − Z′)/Z is the total
equilibrium frequency of the omitted high energy structures. In practice, it is sufficient to use
an energy band that extends only a few kT above the highest energy structure of interest, such
that (Z − Z′) � Z.

3. Kinetics

Very few experimental data are available at present to estimate transition rates between
different secondary structures. It is known that the rate of hairpin formation is governed
by the cancellation of the positive loop energy by the closing base pair [31, 32], and that local
hairpin formation is favoured over long-distance structural elements, because of the spatial
proximity of the opposing base-pair partners [5, 26].

In [9] it has been shown that a good approximation to the few available quantitative and
qualitative data on RNA folding kinetics is obtained by modelling conformational changes
in terms of elementary steps of opening and closing of base pairs. In this approach the
transition rate rxy from the secondary structure y to the secondary structure x is nonzero only
if (y, x) ∈ M, i.e. if x and y are neighbours in the conformational energy landscape. In other
words, the folding dynamics of an RNA molecule is described as motion on its conformational
energy surface. Denote the probability that the molecule has the secondary structure x at time
t by px(t), the dynamics is governed by the master equation

dpx

dt
=

∑
y∈X

rxypy(t) with rxx = −
∑
y 	=x

ryx. (2)

In other words, the dynamics is described by a continuous-time Markov process with
infinitesimal generator R = (ryx). We solve this linear system of differential equations
by explicitly computing 
p(t) = exp(tR) 
p(0).

3 The software is available from http://www.tbi.univie.ac.at/∼ ivo/RNA/Barriers.
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The only missing ingredient is a model for the rates rxy between neighbouring RNA
secondary structures. The transition state model dictates an expression of the form

ryx = r0 exp

(
−E

	=
yx − E(x)

RT

)
for x 	= y (3)

where the transition state energies E
	=
yx must be symmetric to assure detailed balance,

E
	=
yx = E

	=
xy . In the simplest case one can use

E 	=
yx = max{E(x),E(y)} (4)

which amounts to the Metropolis rule of simulated annealing. More sophisticated models for
RNA are discussed in [17, 36, 38]. The parameter r0 could be used to gauge the time axis
from experimental data, here we simply use r0 = 1.

4. Macrostates and transition rates

A description of the energy landscape or the dynamics of an RNA molecule based on all
secondary structures is feasible only for very small sequences since the number of structures
|X| grows exponentially with sequence length [16, 43]. We therefore need to coarse-grain the
representation of the energy landscape.

The simplest and most straightforward approximation for the folding dynamics is the
Arrhenius law for transitions on the barrier tree. Within this model, transitions occur only
between local minima that are directly connected by a saddle point, and the transition state
energies are approximated by the saddle point energy E[α, β]. This approximation completely
neglects entropic terms that arise because there are many possible paths connecting two local
minima.

A much better approximation can be derived from the microscopic dynamics as follows.
Let � = {α, β, . . .} be a partition of the state space X. The classes of such a partition are
macrostates. As a concrete example, consider the partition of X defined by the gradient basins
B(z) of the local energy minima. To each macrostate α, we can assign the partition function

Zα =
∑
x∈α

e−E(x)/RT (5)

and the corresponding free energy

G(α) = −RT ln Zα. (6)

Let us now turn to the transitions between macrostates. Suppose we know the transition
rates ryx from x to y. Then

rβα =
∑
y∈β

∑
x∈α

ryxProb[x|α] for α 	= β (7)

where Prob[x|α] is the probability of occupying state x ∈ α given that we know the process
is in macrostate α. The kinetics of the molecule in terms of its macrostates is given by the
master equation

dpα

dt
=

∑
β∈Π

rαβpβ(t) (8)

where pα(t) = ∑
x∈α px(t) and rαα = −∑

β 	=α rαβ . Assuming (local) equilibrium, we have
Prob[x|α] = e−E(x)/RT /Zα and hence

rβα = 1

Zα

∑
y∈β

∑
x∈α

ryx e−E(x)/RT . (9)
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The point here is that we can compute rβα ‘on flight’ while executing the barriers program
if two conditions are satisfied: (a) for each x we can efficiently determine to which macrostate
it belongs and (b) the double sum in equation (9) needs to be evaluated only for neighbouring
conformations (x, y) ∈ M. Condition (b) is obviously satisfied in the landscape model since
ryx = 0, by definition unless x and y are neighbours.

Condition (a) is easily satisfied for each of the gradient basins: in each step of the
barriers algorithm all neighbours y of the newly added structures x that have a smaller
energy have already been processed. Hence, if their assignment to a gradient basin is known,
the assignment for x equals the one for its lowest energy neighbour. Initially, each local
optimum forms the nucleus of new gradient basin, hence the macrostate to which x belongs
can be determined in O(δ) operations, where δ is the maximum number of neighbours of a
secondary structure.

We can use the transition state model to define the free energies of the transition state G
	=
αβ

by setting

rβα = r0 exp

(
−G

	=
βα − G(α)

RT

)
. (10)

A short computation then yields

G
	=
βα = −RT ln

∑
y∈β

∑
x∈α

exp

(
−E

	=
xy

RT

)
(11)

as one would expect. This allows us to redraw the barrier tree (which was given in terms of
the energies of metastable states and their connecting saddle points) in terms of free energies
of the corresponding macrostates and their transition states.

5. Computational examples

To demonstrate the quality of the coarse-graining given above, we present here the folding
dynamics for two examples: a short artificial sequence, and the well-known yeast tRNAphe

sequence.
The short sequence, called xbix, has a length of 20 nt and the complete conformation

space consists of 3886 secondary structures. For this short sequence it is possible to directly
integrate the master equation (2) of the microscopic process and to compare it with the coarse-
grained dynamics on the space of 34 macrostates corresponding to the local minima of the
energy surface. Figure 1 shows that there is excellent agreement between the macrostate
approximation (c) and the full process (d). The Arrhenius law gives a qualitatively correct
description of the process, although quantitative details are significantly different.

The tRNA sequence, with a length of 76 nt, has some 2.8 × 1017 possible secondary
structures. To recover all saddle points between low-lying local minima, we considered
approximately 25 million structures within 15 kcal mol−1 of the ground state, and used
barriers to compute the 1000 lowest energy local minima as well as the rates between the
corresponding macrostates. Only minima with a depth of at least 1 kcal mol−1 were considered
in the process.

Obviously, solving the master equation of the full process including the dynamics of all
allowed secondary structures is out of question for such a large conformation space. Instead
we compared our coarse-grained dynamics to a stochastic sample of trajectories generated
by kinfold. The program simulates the Markov chain (2) by a rejection-less Monte Carlo
algorithm [12]. Further details on the kinfold algorithm can be found in [9].
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Figure 2. Refolding of a tRNA molecule. The transition from metastable state 80 to 56 was chosen
because it shows a pronounced plateau indicating two very different pathways: some trajectories
cross the highest saddle point and enter the subtree on the right while others refold directly from
80 to 56. (a) Barrier tree showing the 100 lowest energy local minima, local minima 56 and 80 are
the two left-most states (highlighted in grey and marked by an arrow); (b) cumulative distribution
of first passage times (average of 9000 kinfold simulations) and (c) occupancies of macrostates
1, 5, 56 and 80, computed with an absorbing state attached to basin 56.

Computing the occupancy of each macrostate from kinfold trajectories is very expensive
in terms of computer resources, in particular because the time to equilibration becomes too
long. Instead, we have used kinfold to compute first passage times by defining a stop structure
in addition to the start point of each trajectory. For the macrostate Markov process, we
introduce an additional absorbing state, �, that is accessible only from the macrostate ω,
which contains the stop structure u with a rate r�ω = r0 exp(−Eu/RT )/Zω.

The kinfold simulations for figure 2 required about 3 months of CPU time on an Intel
Pentium 4 running at 2.4 GHz under Linux. In the coarse-grained model, the computational
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bottleneck concerning CPU and memory resources is the diagonalization of the transition
matrix R, necessary for the computation of exp(tR). For the 1000 states used in the example,
diagonalization takes on the order of 1 min.

As shown in figure 2 simulation and macrostate approximation are in reasonable
agreement. The timescale of the macrostate process is shifted somewhat to shorter times
and the percentage of trajectories that fold directly is overestimated. This is probably a
consequence of the truncation of the energy landscape which leads to an incomplete sampling
of high energy structures that are more likely to lead outside the 56–80 subtree. For transitions
with lower energy barriers, the agreement is generally better.

6. Concluding remarks

We have shown here that a discrete model of secondary structure folding is capable of
describing the folding dynamics at macroscopic timescales that are beyond the reach of
methods that operate at atomic resolution. For toy examples, one can simply integrate the
master equation of the folding dynamics, as has also been done in [46], albeit not using the
standard RNA energy model. A controlled approximation to macrostates, defined here as
the gradient basins of metastable states, makes the computation of the dynamics feasible for
sequences of at least the size of tRNAs (76 nucleotides and approximately 2500 atoms).

The macrostate approximation provides an efficient means of predicting whether a given
RNA sequence can act as an RNA switch, and if so, at which timescales.

Often RNA switches are triggered by binding of other molecules. In many cases the
interaction partner is another RNA. The folding landscape of a pair of interacting RNAs could
be computed explicitly using a modified version of the RNAsubopt program, so that at least
the case of RNA triggered RNA switches can be modelled entirely within the macrostate
approximation. In other cases the energetics of the interaction with the trigger has to be
described separately.

Since the barriers program used to compute the transition rate matrix R can deal with
arbitrary discrete landscapes, the approach is readily applicable to other problems such as
lattice protein folding.
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